激光无接触高电压测试

赵 琨 叶小珠 王汝侯 王佩琳

(中国科学院安徽光机所)

汪 宏 正

(安徽省电力试验研究所)

提 要

本文介绍用氦-氖激光器作为光源,电光晶体 LiNbO₃ 作普克尔盒,运用横向调制在 150 千伏的 50 赫电压下的实验,最大相对误差 $n_{max} = 7.7\%$,平均相对误差 $n \leq 2.0\%$ 。

Non-contact high-voltage measurement with laser beam

Zhao Kun Yi Xiaozhu Wang Ruhou Wang Peilin

(Anhui Institute of Optics and Fine Mechanics, Academia Sinica)

Wang Hongzheng

(Anhui Institute of Electrical Power Experiments)

Abstract

An experiment of transverse modulation at voltage 150kV, 50Hz is presented, with a He-Ne laser as the light source and an electro-optic crystal LiNbO₃ as the Pockels' cell. Its maximum relative error $n_{\text{max}} = 7.7\%$, average relative error $\bar{n} \leq 2.0\%$.

引 言

高电压测量仪器是电力系统和高电压实验室的重要设备,目前通用的互感器之类的设备大多是根据电磁感应原理设计制造的。随着电压等级的提高,绝缘愈来愈困难,同时造价将急剧上升,体积也庞大。

激光出现后有人曾利用硝基苯之类的物

质的克尔效应进行过高电压测试,但因电极 支架和玻璃器皿表面爬电及硝基苯之类的物 质提纯上的困难限制了测量等级。

我们将两电极板脱开,将电光晶体置于 地端极板中心,利用电容分压的方法,克服了 绝缘问题及电光晶体耐电压问题。适当调整 极板间距,使电光调制工作在线性区域,既可 避免畸变,又可在原则上不受电压等级的限

收稿日期: 1979年6月11日。

制。由于电光晶体反应速度快,没有电抗元件,因此可为无畸变地测量直流至毫微秒量级的电压提供一条新途径。目前利用激光在测量大电流方面已取得很大进展,配合起来可以形成一套激光测量各电气量的整套装置。

原理及实验装置

如图 1 所示, 经起偏器 P_1 起偏的线偏 振光沿电光晶体铌酸锂的光轴方向传播, 其 偏振面与晶轴 x 或 y 重合 (即与电感轴 x' 或 y' 的夹角 45°)。当沿晶体 x 轴 向 施 加 电场 后,因电光效应使线偏入射光的 x', y' 轴向分 量之间产生相位差 δ 。

 P1--起偏器, x方向起偏; P2--检偏器, y方向检偏;
 1-光阑; 2--6328Å干涉滤光片。 λ/4 波片与 x方 向夹角为 45°

$$\begin{split} \delta &= \frac{2\pi}{\lambda} (n_{x'} - n_{y'}) l = \frac{2\pi}{\lambda} n_0^3 r_{22} E l \\ &= \frac{2\pi}{\lambda} n_0^3 r_{22} l \frac{V}{d} \end{split} \tag{1}$$

no---晶体折射率,

r22—电光系数,

1----长度(即晶体光轴方向长度),

d---晶体 a 轴向厚度,

λ——入射光波长,

V——晶体 a 轴向电压降。

利用与 P₁ 正交放置的检 偏器 P₂ 可使 这两分量达到波长干涉的目的。此时输出光 强 I 与入射光强 I₀ 存在下述关系式。

$$I = I_0 \sin^2\left(\frac{\delta}{2}\right) = I_0 \sin^2\left(\frac{\pi}{\lambda} n_0^3 r_{22} l \frac{V}{d}\right) \quad (2)$$

若外加电压是一个交变电压如工频

$$V = V_0 \sin \omega t, \ \mathfrak{M}(2) \exists \mathfrak{B} \mathfrak{H}$$

$$I = I_0 \sin^2 \left(\frac{\pi}{2} \frac{V_0 \sin \omega t}{V_\pi} \right) \tag{3}$$

 $\mathcal{T}_{\pi} = \frac{\lambda a}{2n_0^3 r_{22}l}$ 称为半波电压。

图 2 光强调制曲线

由(2)、(3)式及图 2 可知 I/I_0 与施加的 调制电压 V 不成线性关系,输出光强 I 的变 化与施加的调制电压 $V = V_0 \sin \omega t$ 的波形相 比有畸变,并且强度很小,无实用价值。为 此,可在光路中插入 $\frac{\lambda}{4}$ 波片或在晶体 α 轴向 预偏 $V_{\pi/2}$ 电压,将工作点从 O 点移至 B 点, 确定线性区间 ABC,可使输出光强波形畸变 小。本实验选用 $\frac{\lambda}{4}$ 波片,其放置方法如图 1 所示,使快轴平行于 α' 轴,慢轴平行于 g' 轴。 经三角变换(3)式变为 $I = I_0 \left\{ \frac{1}{2} \left[1 + \sin \left(\pi \frac{V_0}{V_{\pi}} \sin \omega t \right) \right] \right\}$ (4) $\sin \left(\pi \frac{V_0}{V_{\pi}} \sin \omega t \right) = 2 [J_1(\xi) \sin \omega t]$

$$(V_{\pi})^{-1} = 100$$

+ $J_{3}(\xi) \sin 3\omega t + J_{5}(\xi) \sin 5\omega t$
+ $\dots + J_{2n+1}(\xi) \sin (2n+1)\omega t$] (5)

式中
$$\xi = \pi \frac{V_0}{V_{\pi}}$$

(5)式为贝塞尔函数形式,它表明输出光强信 号只含有奇次谐波,而高次谐波的存在使输 出波形产生失真。这对应用不利,为此可以

. 52 .

限定调制电压幅值 V_0 ,把高次谐波成分控制 在允许的范围内。当 $\xi=1$ 时, $J_1(1)\approx 0.48$, $J_3(1)\approx 0.02$,此时三次谐波幅值仅为基波幅 值的 4% 左右,进一步减小 V_0 ,可以将高次 谐波造成的失真忽略掉。

结果分析

1. 条件

(i) 光源──氦-氖激光器,中心波长6328Å。

(ii) 电光晶体铌酸锂,尺寸: 7×7×29
 毫米³,半波电压 V_{∞(ℝ№0}≈1300 伏。

(iii) 平板电极尺寸 φ150×5, 倒角R2.5。

(iv) 高压信号源: 50千伏变压器, 150 千伏高压调压器。

(v) 接收元件: GDB-28 光电倍增管。

(vi) 波形监视: SBM-10 示波器。

(vii) 数值监视: GB-98 毫伏表。

2. 实验分两阶段进行

(i)极间施加电压(有效值)0~40千
伏,板极间距分刻10厘米、15厘米、19.5厘
米、24厘米。

(ii)极间施加电压(有效值)30~150千伏,板极间距46.5厘米。

3. 数据处理

令

由

30~150千伏实验数据经最小二乘法处 理。

设极间电压值为 æ

GB-9B 电压值为 y

y 与 x 之间的关系式采用 y = ax + b 方
 程式。令第 i 次测量值分别为 y_i, x_i。则 y_i
 值的偏离量为

$$y_{i} - y(x_{i}) = y_{i} - (ax_{i} + b) = u_{i}$$
$$\phi(a, b) = \sum_{i=1}^{k} v_{i}^{2},$$
$$\frac{\partial \phi}{\partial a} = 0, \quad \frac{\partial \phi}{\partial b} = 0$$

求得 a、b 值,从而得出对应各个极间电压值 下的最可几电压值 ax_i+b,并由此作出最可 几曲线。

经计算 *a*=0.148×10⁻⁶, *b*=0.345 毫伏 其均方根误差

$$m = \sqrt{\frac{\sum_{i=1}^{k} v_i^2}{K-2}} = 0.4$$
 毫伏

最大相对误差

$$n_{\rm max} = 7.7\%$$

平均相对误差

$\bar{n} \leqslant 2.0\%$

数据及曲线见附表和图 5。

V_{有效值}=10千伏 板极间距15厘米

V 有效值=20千伏 板极间距 15 厘米

V 有效值=30 千伏 板极间距 15 厘米 图 3 输出光强 I 波形

4. 分析

图 3 给出了 10~30 千伏之间的输出光 强 I 波形无明显畸变,但在实验中有时发现 波形畸变的情况。这是由于氦-氖光源 输出 自身振荡所致。

图 4 给出了 10~40 千伏极间电压下的 几个极间间距的输出曲线,从这组曲线中可

图 4

150千伏数据处理表

	1	2	3	4	5	6	7	8	9	10	11	12	13
极间电压(千伏) GB-9B 电压(毫伏) 最可几电压(毫伏) 相对误差 n(%) 绝对误差 m(毫伏)	133.5 20.2 20.1 0.5 0.1	151.0 24.2 22.7 6.6 1.5	141.0 21.8 21.2 2.8 0.6	129.8 19.3 19.6 -1.3 0.3	119.3 18.0 18.0 0 0	110.0 16.5 16.6 -0.7 0.1	100.0 15.0 15.1 -0.9 0.1	90.0 13.5 13.6 1.2 0.1	79.0 12.0 12.0 0 0	$ \begin{array}{r} 69.0 \\ 10.5 \\ 10.6 \\ -0.5 \\ 0.1 \end{array} $	59.59.09.2 $-1.60.2$	48.5 7.7 7.5 2.3 0.2	$ \begin{array}{r} 41.0\\ 6.1\\ 6.4\\ -4.9\\ 0.3 \end{array} $
	14	15	16	17	18	19	20	21	22	23	24	25	26
极间电压(千伏) GB-9B 电压(毫伏) 最可几电压(毫伏) 相对误差 n(%) 绝对误差 m(毫伏)	33.5 5.2 5.3 -1.9 0.1	40.5 6.4 6.3 0.9 0.1	50.5 8.0 7.8 2.3 0.2	61.0 9.5 9.4 1.4 0.1	72.3 10.2 11.0 7.7 0.8	82.0 12.8 12.5 2.5 0.3	93.0 14.2 14.1 0.6 0.1	104.0 16 15.7 1.7 0.3	116.0 17.5 17.5 0 0	124.0 19.0 18.7 1.6 0.3	144.5 22.0 21.7 1.2 0.3	152.0 24.0 22.8 5.1 1.2	140.5 21.0 21.1 -0.7 0.1
and the second of	27	28	29	30	31	32	33	34	35	36	37		
极间电压(千伏) GB-9B(毫伏) 最可几电压(毫伏) 相对误差 n(%) 绝对误差 m(毫伏)	131.0 19.0 19.7 -3.7 0.7	121.5 18.0 18.3 -1.8 0.3	$ \begin{array}{r} 108.5 \\ 16.0 \\ 16.4 \\ -2.5 \\ 0.4 \end{array} $	99.0 15.0 14.9 0.7 0.1	89.5 13.5 13.6 -0.8 0.1	79.5 12.0 12.1 -1.2 0.1	69.5 10.6 10.6 0 0	$ \begin{array}{r} 60 \\ 9.0 \\ 9.2 \\ -2.4 \\ 0.2 \end{array} $	$ \begin{array}{r} 48.5 \\ 7.3 \\ 7.5 \\ -2.9 \\ 0.2 \end{array} $	$ \begin{array}{r} 40.5 \\ 6.0 \\ 6.3 \\ -5.4 \\ 0.3 \end{array} $	$ \begin{array}{r} 32.5 \\ 5.0 \\ 5.1 \\ -3.0 \\ 0.1 \end{array} $		

• 54 •

以明显看出随着间距的缩短线性电压区减小,在10厘米时,线性极间电压区为20千 伏,24厘米时线性极间电压区大于40千伏。 这与设计思想相符合。在相同的极间电压情 况下,当间距缩短,晶体上的分压增加,当 Vo 超出线性区后呈现非线性状态。

同样极间距离下,两次(或几次)的实验 曲线漂移起因在于氦-氖光源输出功率的漂 移,光束偏离晶体光轴方向,GB-9B的不稳 定及读数误差等等几个主要因素。

在46.5 厘米间距实验中,当电压加到 120千伏以上时,发生上电极电晕现象,这是 极板倒角 R 小所致,此时数据波动大,波形 畸变显著。

改进意见

为了使实验装置进入实用阶段,我们认 为必需注意从下列几方面进行改进,达到减 小误差、方便使用的目的。

(1) 采用单模单频线偏激光光源减小功 率漂移影响,同时亦可采用光电回控措施提 高功率输出稳定性,另外亦可采用差分电路 减小 Io 的变化对 I 的影响。

(2) 选用优质晶体,提高加工精度,进行 温度补偿。

(3) 提高光路机械调整系统的精度和稳定性,以免光束偏离光轴。以 ADP 晶体 为

例,其偏离角不能大于15分,当 a=30分时, 相对误差可达8%。

(4) 合理地设计电极,以免电晕的产生。

(5) 空气的湿度、环境温度等因素的变 化导致空气的介电常数变化,从而影响分压 比值,影响测量精度,另外高频应用时空气及 晶体的介电常数亦不同,这些都需作校准曲 线进行校正。

(6) 读数部分可改用数字电路进行显示。

结束语

本实验是在模拟性装置上进行的,它与 传统互感器之类的测试方法相比具有绝缘性 好、安全、造价低、轻便等等一系列优点,原则 上不受电压等级的限制。如光源寿命达上万 小时后,对于工程性的野外应用是引人注目 的,为此,许多国家也正开展这方面的研制和 应用。目前国内光源已获近万小时的寿命,这 就为广泛开展国内工程性应用提供了可喜的 前景。

参考文献

- [1] 《激光技术》,天津大学精仪系编译。
- [2] 笹野隆生; 电气学会论文集(日), 1973, 93B, No. 10, 501~507.
- [3] E. C. Cassidy et al.; IEEE Tra. on Ins. and Meas., 1972, 1M-21, No. 1~4, 504~510.

(上接第40页)

足光电输出信号有足够的电压幅度就行。

计数脉冲间隔误差的允许值一般可按脉 冲信号的空度比大于1的原则求得。(保证 测量过程中可逆计数器不漏计脉冲数。)例如 在四细分的情况下,应满足如下关系式:

$$\frac{\left(\frac{\pi}{2} - |2\varDelta\theta|\right)\frac{T}{2\pi} - t}{t} > 1$$

稍加整理后得:

$$2\Delta\theta \left| < \frac{\pi}{2} - 4\pi \, \frac{t}{T} \qquad (15)$$

其中T为与 $\frac{\lambda}{2}$ 对应的信号周期; t为脉冲宽度。

有了脉冲间隔误差 |2*4θ*| 的允许值,按 (14)式就可以提出对光电输出信号的质量要 求,或者相反。